
A Homemade LD to DMTF Converter

Getting the Code onto the Microcontroller

From what I could tell the cheapest way to do this was via an Arduino. I got a Chinese Uno clone for less

than three quid.

Assuming you've already got an Arduino and installed it's IDE software here's what to do.

Open the sketch File > Examples > 11. ArduinoISP > ArduinoISP and upload it to the

Arduino.

Go to File > Preferences and enter http://drazzy.com/package_drazzy.com_index.json

into the Additional Boards Manager URLs box.

Go to Tools > Board > Boards Manager. Scroll down to ATTinyCore by Spence Konde, click it

and then click Install.

Now go back to Tools > Board and choose ATtiny 25/45/85. Go to Tools > Chip and choose

ATTiny85. Go to Tools > Clock and choose 4 MHz (external).

Finally go to Tools > Programmer and choose Aurdiuno as ISP.

The Tools menu should now look like this, though the Port may be different:—

Next connect the ATTiny85, plus its crystal and capacitors to the Arduino. The circuit specifies 10pF

capacitors but my crystals said to use 20pF so I did. The crystal goes between Pins 2 and 3 and a capacitor

is connected between Pin 2 and Ground and another between Pin 3 and Ground. Also connect a 10µF

capacitor between RESET and GND on the Arduino.

Now click Tools > Burn Bootloader.

Extract the file main.hex from the ZIP file and put it in your Home directory. On Windows that will be

something like C:\Users\Joe or /home/joe on Linux.

Open a Command Prompt/Terminal and enter a command SIMILAR to one of these; your Home

directory isn't going to joe, the Arduino IDE software may have been installed elsewhere and the port

could be different. The commands are also in AVRDUDE.TXT in the ZIP for easy cutting and pasting. NB

Linux commands are case-sensitive as is AVRDude on either system!

On Windows:—

"C:\Program Files\Arduino\hardware\tools\avr/bin/avrdude" -C"C:\Program
Files\Arduino\hardware\tools\avr/etc/avrdude.conf" -v -pattiny85 -cstk500v1 -
PCOM4 -b19200 -Uflash:w:main.hex:i

On Linux:—

/home/joe/arduino-1.8.2/hardware/tools/avr/bin/avrdude -C/home/joe/arduino-
1.8.2/hardware/tools/avr/etc/avrdude.conf -v -pattiny85 -cstk500v1 -
P/dev/ttyUSB0 -b19200 -Uflash:w:main.hex:i

I'll try to explain what this lot means to help making the necessary changes.

"C:\Program Files\Arduino\hardware\tools\avr/bin/avrdude" or

/home/joe/arduino-1.8.2/hardware/tools/avr/bin/avrdude tells the computer to run

AVRDude.

-C"C:\Program Files\Arduino\hardware\tools\avr/etc/avrdude.conf" or

-C/home/joe/arduino-1.8.2/hardware/tools/avr/etc/avrdude.conf tells AVRDude to use

the configuration file that the Arduino IDE software has already created and which must work or we

wouldn't have got this far.

-v is Verbosity, ie tell it to let you know what's happening.

-pattiny85 tells it that we're programming an ATTiny85.

-cstk500v1 tells it that we're using a Atmel STK500 programmer with Version 1.x firmware, which is

what the Arduino is emulating.

-PCOM4 or -P/dev/ttyUSB0 tells it which port the programmer (ie the Arduino) is connected to.

-b19200 sets the baud rate.

-Uflash:w:main.hex:i tells it to write main.hex to the chip's flash ROM.

Hopefully the Tiny85 is now ready for use. If something has gone wrong it may go into a sulk and refuse to

talk to you anymore. If this happens there are details in the ZIP on how to reset it so you can start again.

Construction

The components should be installed on the PCB as below:—

R1 1kΩ

R2 100Ω

R3 4.7kΩ

R4 10kΩ

R5 10kΩ

R6 10kΩ

R7 10kΩ

R8 10kΩ

C1 100μF

C2 0.1μF

C3 0.1μF

C4 0.1μF

C5 0.1μF

C6 10pF*

C7 10pF*

C8 0.33μF

* or as

recommended by

datasheet for

X1

D1 P6KE22A

D2-D5 1N4007

D6 3.9V Zener

T1 BC337

T2 BC337

IC1 ATTiny85

X1 4MHz Crystal

Installation

After building the circuit it needs installing in a telephone.

Firstly remove the dial and its associated wiring. Connect T8 and T10 with two 4.7V. zener diodes

connected nose-to-nose. These old 'phones will happily gobble all the power they can get and these put it
on a diet meaning it will get all it needs but leave some for the converter.

Later 746s had extra terminals labelled T19A and T19B. Early ones don't. The easiest fix is to use one of

the spare terminals, say T14. Solder a bit of wire between the underside of that and Pin 4 of the Induction

Coil.

Connect terminal 1 on the converter to terminal 5 of the dial and terminal 2 to terminal 3. Connect dial

terminal 4 to terminal 3 of the converter. Finally connect converter terminal 4 to T8 and terminal 5 to

T19A or T14. See diagrams below.

Dial Connexions — All Instruments

LD-DTMF CONVERTOR WITH POLARITY PROTECTION BRIDGE

Notes by Arnie Weber:
- Based on work by Boris Cherkaskiy (http://boris0.blogspot.ca/2013/09/rotary-dial-
for-digital-age.html)

- Reduced R1 from 2k to 220R to minimize voltage droop when dial/pulse switches
are closed.

- Added filtering to debounce switch inputs.
- Swapped Pins 6 and 7 on ATTiny85 to allow pulse counting to trigger on pin
change interrupt (INTO).

Notes by Joe Freeman:
- Changed diagram to illustrate connecting to GPO 746 telephone.
- Added Bridge (D2-D5) to allow functionality independent of line polarity.
- Added Transient Voltage Suppression diode (D1).
- Added T2 and R8. Changed zener diode (D6) from 5.1V to 3.9V.
- Changed R1 to 1k
- Reduced R2 from 330R to 100R as ATA didn't always detect tones.
- Reduced C1 from 220μF to 100μF.

http://boris0.blogspot.ca/2013/09/rotary-dial-for-digital-age.html
http://boris0.blogspot.ca/2013/09/rotary-dial-for-digital-age.html

Operation

To use this devise you simply dial as normal and when dial returns to rest it will send the appropriate

DTMF tone. It will however do more.

To dial a *, dial 1 and hold the dial against the stop until you hear a beep. Let go and when the dial has
returned it will send a *.

To dial a #, dial 2 and hold the dial against the stop until you hear a beep. Let go and when the dial has

returned it will send a #.

Numbers 3 to 9 can be used for speed dialling. To set these up dial 0 and hold it until you hear a beep.

When the dial has returned it will play a tune. Now dial the figure you wish to program; it will then play a

shorter tune. Now dial the number you wish to store. When you've finished dial and hold 0 again.

To call a stored number dial and hold the figure you stored it under.

As I said at the beginning, I wanted this to use with an ATA; a Linksys PAP2 to be exact. As entering

numbers via a dial is slower than by buttons I found I had to lengthen the Inter-Digit Timer valve to five

seconds to be able to use it comfortably. This MAY mean that after dialling the final figure there's a

noticeable pause before the call is connected, though if your Dial Plan is properly set-up there won't be.

